25x^2+20x+1=(x+2)(x+11)

Simple and best practice solution for 25x^2+20x+1=(x+2)(x+11) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 25x^2+20x+1=(x+2)(x+11) equation:



25x^2+20x+1=(x+2)(x+11)
We move all terms to the left:
25x^2+20x+1-((x+2)(x+11))=0
We multiply parentheses ..
25x^2-((+x^2+11x+2x+22))+20x+1=0
We calculate terms in parentheses: -((+x^2+11x+2x+22)), so:
(+x^2+11x+2x+22)
We get rid of parentheses
x^2+11x+2x+22
We add all the numbers together, and all the variables
x^2+13x+22
Back to the equation:
-(x^2+13x+22)
We add all the numbers together, and all the variables
25x^2+20x-(x^2+13x+22)+1=0
We get rid of parentheses
25x^2-x^2+20x-13x-22+1=0
We add all the numbers together, and all the variables
24x^2+7x-21=0
a = 24; b = 7; c = -21;
Δ = b2-4ac
Δ = 72-4·24·(-21)
Δ = 2065
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{2065}}{2*24}=\frac{-7-\sqrt{2065}}{48} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{2065}}{2*24}=\frac{-7+\sqrt{2065}}{48} $

See similar equations:

| y=-X^3+2X^2+11X-2 | | 4x-3×5x-3=3x-1×8×-7 | | 2x-3=7.5 | | 2x-3=7×5 | | 3x-4+5x-9=3 | | 2x=0-4 | | (18x-45)-(70-50x)=28x | | 3(x+5)-4=5 | | 3(2x-5)/4-5(7-5x)/6=7x/3 | | 2c=32 | | 201√21x=2 | | 15+d=6 | | 5x/4+3/4-2x/3-4/3=5 | | A=24h-9h^2 | | 5x+3/4-2x-4/3=5 | | 12(p-4)=4(p+12) | | 10+x+25+x=740 | | 10+x+25+x+50=740 | | 1/2x+6-5x=18 | | 2(2p+3)-5=25 | | 8(2x-1)=10 | | 3y-×=9 | | 2m+11÷4=3m+2 | | 2k+9=25-3k | | 8-p=10+p | | 8p=3p+5 | | 8y-6(100-100)=26 | | 8y-(100-100)=26 | | 5(x+4)+2x+3(x-2)=74 | | 4(2x+3)-2(3x5)=8 | | (p^2-3)^-2p=1 | | 4/5d+8/2=7/4+2/5d |

Equations solver categories